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The impact of observations can be dependent on many factors in a data assimilation (DA) system including data quality control,
preprocessing, skill of the model, and the DA algorithm. The present study focuses on comparing the impacts of observations
assimilated by two different DA algorithms. A three-dimensional ensemble-variational (3DEnsVar) hybrid data assimilation system
was recently developed based on the Gridpoint Statistical Interpolation (GSI) data assimilation system and was implemented
operationally for the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS). One question to address
is, how the impacts of observations on GFS forecasts differ when assimilated by the traditional GSI-three dimensional variational
(3DVar) and the new 3DEnsVar. Experiments were conducted over a 6-week period during Northern Hemisphere winter season at
a reduced resolution. For both the control and data denial experiments, the forecasts produced by 3DEnsVar were more accurate
than GSI3DVar experiments. The results suggested that the observations were better and more effectively exploited to increment the
background forecast in 3DEnsVar. On the other hand, in GSI3DVar, where the observation will be making mostly local, isotropic

increments without proper flow dependent extrapolation is more sensitive to the number and types observations assimilated.

1. Introduction

Modern data assimilation systems in various numerical
weather forecast centers assimilate millions of observations
each day from in situ and remote sensing platforms. The
information about the relative importance of each data type
leads to better design of observation network and therefore
better utilization of the observations. Data impact studies
have been conducted in major operational weather forecast
centers such as National Centre for Environmental Prediction
(NCEP) (e.g., [1-6]), Naval Research Laboratory (NRL) (e.g.,
[7]), National Aeronautics and Space Administration (NASA)
(e.g., [8]), European Centre for Medium Range Weather
Forecasting (ECMWF) (e.g., [9-11]), and UK Met Office (e.g.,
[12]).

There are several methods to assess the impact of
observations in a data assimilation system. Observing sys-
tem experiment (OSE, e.g., [13-15]) involves removing the

subsets of observations from a data assimilation system
and comparing the resultant forecasts against the base run
which assimilates all the observations. Langland and Baker
[7] proposed and developed an alternative method which
uses the adjoint-based sensitivity. Compared to OSE, this
method has the advantage of assessing the impacts of any
or all of the observations simultaneously based on a single
execution of the adjoint system without running multiple
data denial or addition experiments. Gelaro and Zhu [8]
and Cardinali [10] compared observation impacts assessed
by the adjoint and OSE methods. They found that both
methods provide consistent estimates of overall impact of
major observing platforms. Liu and Kalnay [16] proposed
an ensemble based method based on the adjoint formula to
assess the observation impact. This method avoids the use of
the tangent linear and adjoint of the forecast model. Kalnay et
al. [17] showed that the impact of observations assessed by the
ensemble based method is similar to that obtained with OSE.
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FIGURE 1: The increments of temperature fields after assimilating a single temperature observation at 700 hPa (shown at black dot in a).
The temperature observation was one degree warmer than the background forecast. The thin and thick black contours are the background
temperature forecasts and the increments of temperatures at model level 19, respectively. The unit is degrees K. (a) is for GSI3DVar using static
covariance and (b) is for the 3DEnsVar with the full ensemble covariance.

The impact of observations can be dependent on the
assessment methods as well as many factors in a data assimila-
tion (DA) system including data quality control, preprocess-
ing, skill of the model of the DA algorithms, and specification
of observation and background error covariances. Gelaro et
al. [18] investigated the impact of assimilated observations in
different forecast systems from Global Modeling and Assimi-
lation Office (GMAOQ), Environment Canada (EC), and Naval
Research Laboratory (NRL) using the adjoint-based method.
Although the impacts of the major observation types are
similar in each forecast system in a global sense, substantial
differences in several aspects such as regional details of the
impact and the contributions from the individual satellite
data channels were found. Kelly et al. [14] showed that the
advanced data assimilation method was more capable of
propagating information from data rich to data void regions
than less advanced data assimilation method, suggesting the
dependence of the spatial distributions of observation impact
on DA methods.

One aspect within a data assimilation method that can
affect the impact of observation is the specification of back-
ground error covariance. For example, in three-dimensional
variational data assimilation methods (3DVar, e.g., [19-23]),
the background error covariance is assumed to be nearly
static and isotropic. In other words, the increment made to
the background forecast by assimilating given observations
does not vary with the flow of the day. On the other
hand, alternative data assimilation methods like the ensemble
Kalman filter (EnKE, e.g., [24-26]) and the hybrid ensemble-
variational data assimilation (e.g., [27-30]) utilize ensemble
covariance to estimate the background error covariance.
Therefore, in such DA systems, the increments made to the
background forecast by assimilating observations vary with
the flow of the day.

Beginning in May 22, 2012, the NCEP operational Global
Data Assimilation System (GDAS) has transitioned from
3DVar to a 3DVar based ensemble-variational (3DEnsVar)
hybrid data assimilation system (e.g., [30, 31]). In this system,
the flow dependent background error covariance from an
EnKEF [26] is incorporated in the GSI variational minimiza-
tion using the extended control variable method [28]. The
development of the GSI based hybrid ensemble-variational
system is motivated by early studies that have shown that
incorporating this flow dependent ensemble error covariance
in the variational frame work has significantly improved
the analysis and its subsequent forecast [28, 30, 32, 33]. A
description of the GSI based 3DEnsVar hybrid system that we
will use for the current study can be found in Wang et al. [30].
Preimplementation tests have shown that the new GSI based
hybrid system improved both hurricane and general global
forecasts [20, 30, 34, 35].

Figure 1 illustrates the impact of the specification of the
background error covariance on the analysis increment for a
single observation. The single temperature observation was
one degree warmer than the background forecast. It can be
seen that the increment from the GSI3DVar is quasi-isotropic
while the increments from the 3DEnsVar are stretched
along the isotherms. How will the incorporation of the flow
dependent ensemble covariance in GSI affect the impact of
observations? The current study seeks to answer such ques-
tion by comparing the impact of observations assimilated by
the GSI based 3DVar and 3DEnsVar. The OSE was conducted
to evaluate the impact of observations on forecasts out to 5-
day lead times. The impact observation estimated through
OSE involves large number of independent experiments and
is therefore prohibitive to quantify the impact of the entire
observing systems in an operational forecast system. As
initial attempts to address such questions, we restrict the
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FIGURE 2: Time series of the number of (a) Radiosonde and (b) AMSU observations assimilated in 00 UTC data assimilation cycle from 1 to

30 January, 2010.

data impact study to those observing platforms that have
significant impacts on the forecast. Earlier studies have shown
that the Radiosonde and Advanced Microwave Sounding
Unit (AMSU) observations most significantly impact the
forecast in various operational forecast systems (e.g., [6, 8,
36]). The present study therefore compares the impacts of the
observations from these two observing platforms assimilated
by GSI based 3DVar and 3DEnsVar on NCEP Global Forecast
System (GEFS).

AMSU is a multichannel microwave radiometer which
provides information on global atmospheric temperature
profiles and atmospheric water in all of its form. The AMSU
has two subinstruments, namely, AMSU-A and AMSU-B.
AMSU-A has 15 channels which is primarily used for measur-
ing atmospheric temperature profiles. It has a ground resolu-
tion near nadir of 45km. AMSU-B is primarily intended to
measure moisture profiles and it is having a spatial resolution
of 15 km, near nadir.

Figure 2 represents time series of total number of AMSU
and Radiosonde observations assimilated in 00 UTC data
assimilation cycle starting from 1 to 30 January, 2010. The
analysis increments of the AMSU and Radiosonde obser-
vations at the first assimilation cycle in GSI3DVar and
3DEnsVar DA systems are shown in Figure 3. In general,
the increments in the 3DEnsVar are slightly larger than
GSI3DVar DA system for both AMSU and Radiosonde
observations.

Given the computational cost of OSEs, the experiments
were conducted at a reduced resolution of T190 (triangular
truncation at total wave number 190) as compared to the
operational system for both ensemble and variational anal-
yses, following the configurations in Wang et al. [30].

The specific questions to address in this study include
the following. For a given set of observations, how different
or similar is the impact of the data assimilated by GSI
3DVar compared to that assimilated by GSI 3DEnsVar?
For a given DA method, how different or similar is the
impact of Radiosonde relative to AMSU observations? How
is the relative difference of impacts between Radiosonde and
AMSU dependent on the DA method? Apart from these,
the present study also identifies shortcomings of GSI based
3DVar in optimal utilization of observations as compared to
3DEnsVar DA system.

The paper is organized as follows. A brief description
of the data assimilation systems employed in this study is
presented in Section 2. Section 3 describes the design of the
experiments. Section 4 discusses the experiment results and
Section 5 concludes the paper.

2. The Data Assimilation Systems

The present study addresses the impact of the observa-
tions assimilated by two DA methods, namely GSI based
3DVar [23, 31], and GSI 3DVar based ensemble-variational
coupled system (3DEnsVar; [28, 30]). In this study, the
abbreviation of the DA methods follows those of Wang et al.
[30].

2.1. GSI Based 3DVar. The GSI 3DVar system was developed
by the National Oceanic and Atmospheric Administration
(NOAA) NCEP based on the operational Spectral Statistical
Interpolation (SSI) 3DVar analysis system. Instead of being
constructed in spectral space as the SSI, the GSI 3DVar is
implemented in model grid point space. The details about GSI
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FIGURE 3: Geographical distribution of analysis increment (analysis minus background) for temperature at 500 hPa level at the first
assimilation cycle for (a) GSI3DVar RAOB, (b) 3DEnsVar RAOB, (c) GSI3DVar AMSU, and (d) 3DEnsVar AMSU.

based 3DVar algorithm can be found in Wu et al. [23] and
Kleist et al. [20].

2.2. GSI Based 3DEnsVar. A GSI 3DVar based ensemble-
variational (3DEnsVar) hybrid data assimilation system was
developed and implemented operationally at NCEP. In this
system, the ensemble was incorporated in the GSI variational
minimization through augmenting the control variables.
Effectively, the flow dependent ensemble covariance was
linearly combined with the static covariance. The ensemble
was provided from an EnKF directly interfaced with GSI.
The description of the GSI based 3DEnsVar system including
algorithms can be found in Wang [28] and Wang et al. [30].
In this study, the control 3DEnsVar experiment adopted the
same configuration of the 3DEnsVar experiment in Wang
et al. [30]. In Wang et al. [30], both control and ensemble
forecasts were run at the same reduced resolution. All
operational conventional and satellite observations and an

80-member ensemble were used. Various sensitivity exper-
iments were conducted in Wang et al. [30]. It was found
that the two-way coupled configuration did not improve
the forecast beyond one-way coupled configuration and the
inclusion of the static covariance did not further improve the
performance using a full ensemble covariance for the given
experiment configuration. Hence in the present study all the
3DEnsVar experiments are carried out for one-way coupled
configuration using full ensemble covariance.

As described in Wang et al. [30], the following steps are
involved in the one-way coupled 3DEnsVar cycling.

(1) Update the background forecast, using ensemble per-
turbations to estimate the background error covari-
ance. This is achieved using the augmented control
vectors (ACV) method [27].

(2) Update the forecast ensemble to generate the analysis
ensemble using an EnKE.
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TABLE 1: List of experiments.

Experiment Description

GSI3DVar

GSI3DVar control experiment which assimilates all observations in NCEP’s operational data stream

GSI3DVar-NoRAOB

The same as GSI3DVar experiment except denying Radiosonde observations

GSI3DVar-NoAMSU

GSI experiment which denies AMSU observations from operational data set

3DEnsVar
stream

Hybrid control experiment which assimilates all conventional and satellite observations in NCEP’s data

3DEnsVar-NoRAOB

Hybrid experiment which denies Radiosonde observations from operational data set

3DEnsVar-NoAMSU

Hybrid experiment which denies AMSU observations from operational data set

(3) Make ensemble and control forecasts to advance the
state to the next analysis time. In the one-way coupled
3DEnsVar system, the only interaction between Var
and EnKF is that EnKF provides flow dependent
covariance to be incorporated into Var.

The details on how the ensemble was incorporated in
the GSI variational minimization through augmenting the
control variable (i.e., the GSI-ACV component) can be found
in Wang [28] and Wang et al. [30]. In this section, only the
parts related to applying the localization on the ensemble
covariance within 3DEnsVar will be described briefly. In
3DEnsVar, the vertical covariance localization is realized
through the recursive filter transform [37] with the distance
measured either in scaled heights or in number of model
levels. The horizontal localization is realized through the
spectral filter transform. E-folding distances equivalent to
1600 km and 1.1 scaled heights (natural log of pressure is
equal to 1.1) corresponding to the cut-oft distance in the
Gaspari-Cohn [38] localization function were adopted for
the horizontal and vertical localization, respectively, for
3DEnsVar in the current study.

Another component of 3DEnsVar is the ensemble update,
which was done using an EnKF. To update the ensemble
perturbations, an ensemble smoother version of the square
root filter algorithm [39] is used. Following Wang et al.
[30], to account for the sampling errors due to limited
ensemble members, cut-off distances of 1600km in the
horizontal direction and 1.1 scale heights in the vertical
direction were used for the localization for all observations
except the surface pressure and satellite radiance observa-
tions. Vertical localization was prescribed to be 2.2 and 3.3
scale heights, respectively, for surface pressure and satellite
radiance observations, to account for the nonlocal nature of
these observations. A temporal localization of 16-hour cut-off
distance was also implemented. Multiplicative and additive
inflations were applied to account for the deficiency of the
spread in the EnKE The same multiplicative and additive
inflation parameters as in Wang et al. [30] were used. For
the multiplicative inflation, an adaptive algorithm proposed
by Whitaker and Hamill [40] was adopted. The inflation was
calculated by relaxing the posterior ensemble variance to its
prior values by 90%. For the additive inflation, the additive
noise was drawn from a full year’s inventory of differences
between 48-hour and 24-hour forecasts valid at the same

time. A factor of 40% was applied to the differences before
being added to the posterior ensemble.

3. Experimental Design

The GSI3DVar and 3DEnsVar control experiments were
obtained from Wang et al. [30] and briefly described here. In
the control experiments, the assimilation was performed for
6-week period starting from 06 UTC December 15,2009, to 12
UTC January 31, 2010. The operational data stream including
the conventional and satellite data from operational NCEP
GDAS early cycle was assimilated every 6 hours at 0000,
0600, 1200, and 1800 UTC each day. The list of conventional
and satellite observations assimilated can be found in
http://www.emc.ncep.noaa.gov/mmb/data_processing/prep-
bufr.doc/table_2.htm. The same quality control decisions of
the operational GDAS were adopted. The GFS model was
configured in the same way as the operational GFS except
that the horizontal resolution was reduced to T190 due
to the limited computing resources. The model contained
64 vertical levels with the model top layer at 0.25hPa. An
80-member ensemble was run following the operational
configuration. As described in Wang et al. [30] both the
correlation length scales and the magnitude of the error
variances of the control variables in the static covariance
were tuned for the lower resolution experiments.

To study the impact of AMSU and Radiosonde obser-
vations, these data sets were individually denied from the
operational data stream. Table 1 lists the experiments con-
ducted and the named conventions. The impacts of the
observations were evaluated by comparing forecasts up to
120 hours with and without assimilating the observations of
interest. The evaluation was conducted using data collected
during the last 4 weeks of the DA period. Along with
conventional verification methods such as root-mean-square
error (RMSE), several other methods have been used to
verify forecasts. The anomaly correlation coefficient (AC) is
computed based on the method suggested by Brankovic et al.
[41]. Mathematically,

AC
z{[(XF—XC)—(XF—XC)] [(XA—XC)—(XA—XC)H» 1)
Vx [ - x0) - 30 |3 [t - x0) - (x|




Here X denotes the forecast variable, the suffix F denotes
the forecast, suffix C denotes the climatology, and suffix
A stands for the verified analysis used. The overbar is the
areal mean. X is obtained from the NCEP-National Center
for Atmospheric Research (NCAR) reanalysis field [42].
(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.rean-
alysis.derived.pressure.html).

The European Center for Medium Range Weather Fore-
casting (ECMWF) analysis (available from http://tigge.ecm-
wi.int) was used as the verified analysis in this study. Another
metric used in this study is relative forecast impact (RFI),
following the same method adopted by Zapotocny et al.
[5]. The geographic distribution of relative impact has been
computed using the following expression:

RMSE (denial) — RMSE (control)

RFI =
RMSE (control)

x100%. (2)

The RMSE (denial) and RMSE (control) denote the
root-mean-square error for denial experiments and control
experiments, respectively. The relative improvement and
degradation of the forecast with respect to the control forecast
are shown in percentage. In this study, ensemble spread is
also calculated to diagnose the results, using the following
expression:

1 I _
o = m’; (xn - x), (3)

where X = (1/N) Zfil X,

4. Results

4.1. Profiles of Root-Mean-Square Forecast Errors. The
impacts of observations on globally averaged forecasts were
first evaluated. The root-mean-square error (RMSE) for
72-hour forecast lead time is verified with respect to the
ECMWEF analysis. Figure4 shows the globally averaged
RMSE for 72-hour wind, temperature, and specific humidity
forecasts. As shown in Wang et al. [30], for both control
and data denial experiments, wind, temperature, and
humidity forecasts produced by 3DEnsVar are more accurate
than GSI3DVar. In GSI3DVar, the wind and temperature
forecast errors were increased more by denying Radiosonde
than AMSU observations, suggesting that the impact of
Radiosonde is higher than AMSU for wind and temperature
forecasts.

In 3DEnsVar, Radiosonde and AMSU show similar
impact for wind forecast for all the levels while for tempera-
ture forecast the impact of Radiosonde is higher than AMSU
in the lower troposphere (below 500 hPa). The magnitude of
the degradation of the forecast after denying Radiosonde is
less in 3DEnsVar than in GSI3DVar while the degradation
of the forecast after denying AMSU is similar in both DA
systems (Figures 4(a) and 4(b)).

For the specific humidity, as shown in Figure 4(c), the
AMSU data have larger impact than Radiosonde data in both
GSI3DVar and 3DEnsVar. The absolute degradation of the
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specific humidity forecasts after denying the observations
was larger in GSI3DVar than in 3DEnsVar. The impact of
the observations as a function of forecast lead time was also
investigated, which is briefly summarized here.

In GSI3DVar, the impact of Radiosonde remains higher
than the impact of AMSU for wind and temperature forecast
from 72 to 120 h lead times (not shown). However, in
3DEnsVar, the impact of Radiosonde becomes higher for
wind forecast and smaller for temperature forecast relative to
the impact of AMSU from 72 to 120 h lead times. The impact
of Radiosonde and AMSU observations becomes similar for
specific humidity forecast in 120 h of forecast, in both DA
systems.

The impact of the observations on the forecasts initialized
from GSI3DVar and 3DEnsVar was further evaluated by veri-
tying forecasts against Radiosonde observations (not shown).
In general, the impacts of observations when forecasts were
verified against the Radiosonde observations were similar
to those when forecasts were verified against the ECMWF
analyses.

4.2. Zonally Averaged RMSE Difference. This section presents
the zonally averaged RMSE differences between the data
denial experiments and its corresponding control experi-
ments. Such plot reflects the spatial distribution of the impact
of observations as a function of latitude and height. The
RMSE is calculated with reference to the ECMWF analyses.

Figure 5 depicts the zonally averaged RMSE difference
between the control and the data denial experiments for 72-
hour wind forecast. The negative value (blue color) means
that the forecast was degraded when the data was denied,
suggesting positive impacts of the data. The AMSU and
Radiosonde observations in general showed positive impact
in most areas of the domain for both DA schemes. For all
experiments, larger observation impacts for wind forecast
are noticed over the upper levels of troposphere (near
250-300 hPa) compared to lower levels. Similar pattern of
observation impact was noticed by Zapotocny et al. [6]
where impacts of conventional and satellite observations were
evaluated. For GSI3DVar, AMSU and Radiosonde observa-
tions show similar impacts in both magnitude and spatial
distribution in SH. For NH, Radiosonde shows larger and
more extensive impact than AMSU. AMSU has more positive
impact in SH than NH. Radiosonde has more impact in NH
than SH especially at the lower levels (below 500 hPa). These
results are generally consistent with the previous data impact
studies conducted in GSI3DVar DA system (e.g., [6, 8]).

The impact of Radiosonde over SH shows similar or larger
values than NH over the upper levels of the troposphere in
the present study. This is not expected as the distribution
of Radiosonde observations is more limited over SH than
NH. In this study, following Wang et al. [30], since the
model resolution was coarser than the operational GFS, the
static covariance is optimally tuned for the complete set of
observations assimilated in the NCEP GES system. In the
tuned static covariance, the error variance and horizontal
length scales are larger than the covariance in the operational
GSI3DVar. Further analysis on the tuned static covariance in
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h forecast lead time for the GSI3DVar and the 3DEnsVar experiments. Solid and dashed lines are for the GSI3DVar and the 3DEnsVar
experiments. Black, blue, and red lines are for control, NoAMSU, and NoRAOB experiments, respectively.

GSI3DVar showed that such error variances were larger in SH
than in NH especially at upper levels (Figure 6(a)). In that
case, the DA system will tend to extract more information
from observations, over the region of largest background
uncertainty. Moreover, the removal of an observing system
in OSE generally increases the weights of the remaining
observations assuming that the system is optimally tuned
for the complete set of observations assimilated [8]. This

effect is significant for observing systems like Radiosonde,
which receives large weight in the analysis. This could be a
possible explanation for having larger impact for Radiosonde
compared to the AMSU observations over SH.

To confirm the hypothesis, the impact of AMSU and
Radiosonde observations with and without tuning the static
covariance is compared. It was found that tuning of static
covariance has produced significant difference in the impact
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FIGURE 5: Zonally averaged root-mean-square error difference for 72hr wind forecast (m s ') between (a) GSI3DVar and GSI3DVar-
NoAMSU, (b) GSI3DVar and GSI3DVar-NoRAOB, (c) 3DEnsVar and 3DEnsVar-NoAMSU, and (d) 3DEnsVar and 3DEnsVar-NoRAOB.
Blue and red color indicate positive and negative data impact, respectively.

of both AMSU and Radiosonde observations over the upper
levels of SH (not shown). The results are also somewhat
consistent with the study by Whitaker et al. [26], which
showed that tuning of the static covariance in GSI3DVar may
not uniformly improve the forecasts over NH and SH.
Different from GSI3DVar where the background error
covariance is static and predetermined, the background error

covariance from 3DEnsVar is determined by the ensemble
automatically online. Figure 6(b) shows that the overall back-
ground error variance estimated by 3DEnsVar was smaller
than that of GSI3DVar for both NH and SH.

In 3DEnsVar, AMSU shows larger impact and
Radiosonde shows lesser impact over SH as compared
to the impact over NH. The largest difference of the impacts
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of observations between 3DEnsVar and GSI3DVar is seen
on Radiosonde over SH (Figures 5(b) and 5(d)). Compared
to GSI3DVar, the overall impact of Radiosonde is smaller
in 3DEnsVar, which is consistent with Figure 4. In addition,
the impact of Radiosonde over SH is much less than over
NH in 3DEnsVar compared to GSI3DVar. In other words,
the forecast was degraded much less in 3DEnsVar than in
GSI3DVar over SH when Radiosonde was denied. This result
also implies that the 3DEnsVar better utilized predominant
observations such as AMSU over the SH, in the absence of
Radiosonde observations. It is speculated that the 3DEnsVar
better used the satellite radiance through cross variable
covariance and flow dependence of background error
covariance.

The positive impact of AMSU in 3DEnsVar is more
extensive than GSI3DVar in NH. Over SH, the impact of
AMSU was slightly more extensive in GSI3DVar than in
3DEnsVar. GSI3DVar shows significant negative impact over
the North Pole, while 3DEnsVar depicts mostly positive
impact over that region. The inaccuracies in the specification
of skin temperature and surface emissivity may introduce
errors in simulation of surface sensitive channels of AMSU
observations (e.g., Karbou et al. [43]). Skin temperature
and surface emissivity are derived from the background
information (which is different for GSI3DVar and 3DEnsVar).
Therefore, the impact of AMSU observations can vary due to
depending on the quality of the background and this effect
may be more significant over NH, which is dominated by
land surface. This may partially explain the reason for having
negative impact of AMSU in GSI3DVar as compared to the
3DEnsVar over NH.

Similar observation impact results as in wind forecast
are observed for the zonally averaged impact for tempera-
ture forecasts (Figure 7). For the specific humidity forecast
(Figure 8), the impacts of the observations were mostly
concentrated at lower atmosphere (below 500 hPa). In both

GSI3DVar and 3DEnsVar, AMSU data have largest impact
over 15N~60S. The impact of Radiosonde dominates in the
15-45-degree bands in both hemispheres. The absence of
the Radiosonde impact on humidity forecasts over tropics
compared to AMSU is consistent with sparse Radiosonde
observation compared to AMSU over tropics and the sensi-
tivity of AMSU sensors especially by AMSU-B to moisture.
Similar to the wind and temperature forecasts, Radiosonde
data impact in 3DEnsVar is less when compared against
GSI3DVar especially in SH.

The impact of Radiosonde and AMSU observations has
increased from 72 to 120 h lead times in GSI3DVar and
3DEnsVar DA systems (not shown).

4.3. Geographical Distribution of Relative Observation Impact.
The diagnostics shown in the previous verifications brings out
the absolute impact of AMSU and Radiosonde observations
assimilated by GSI3DVar and 3DEnsVar. In this section the
spatial distribution of the impact of observations is shown
in a relative sense, where the data impact is calculated as the
reduction of the RMS forecast error relative to the RMS error
of the control forecast as shown in (2). Figure 9 depicts the
geographical distribution of relative data impact for 72-hour
forecast. The variable shown here is the geopotential height at
500 hPa.

Consistent with the previous verifications (Figures 5, 7,
and 8), Radiosonde and AMSU have shown positive impact
over most of the globe. In GSI3DVar, the spatial distribution
of the impact of Radiosonde and AMSU varies significantly.
For example, in NH, Radiosonde depicts largest positive
impact over Asia, Europe, the Northern Atlantic, and the
Pacific Ocean. In SH, most of the positive impact is seen over
the Pacific Ocean, South America, Australia, and Antarctica
(Figure 9(b)). The positive impact of AMSU is dominant
mostly over SH and tropical regions such as the Indian Ocean,
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FIGURE 7: Zonally averaged root-mean-square error difference for 72 hr temperature forecast (K) between (a) GSI3DVar and GSI3DVar-
NoAMSU, (b) GSI3DVar and GSI3DVar-NoRAOB, (c) 3DEnsVar and 3DEnsVar-NoAMSU, and (d) 3DEnsVar and 3DEnsVar-NoRAOB.

Color definitions are the same as in Figure 4.

South America, and Central Atlantic (Figure 9(a)). The con-
trast of the spatial distribution of impacts between AMSU
and Radiosonde observations in 3DEnsVar is mostly similar
to those in GSI3DVar (Figures 9(a) and 9(c)). Comparing
Figures 9(a) and 9(b) with Figures 9(c) and 9(d) reveals
that the relative impact of the observations in 3DEnsVar

was smaller than that of GSI3DVar for both observations.
For example, the positive impact of Radiosonde over the
South Pacific in 3DEnsVar is less extensive than that in
the GSI3DVar (Figures 9(b) and 9(d)). Relative forecast
degradation is less over South America in the 3DEnsVar than
in the GSI3DVar, when AMSU is denied.
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In all cases in Figure 9, negative impacts of the observa-
tions were found in small areas. The negative forecast impact
produced by AMSU and Radiosonde observations is less
extensive in the 3DEnsVar when compared to that in the
GSI3DVar. Similar patterns of negative forecast impact for
Radiosonde and AMSU as in Figures 9(a) and 9(b) were

found in Zapotocny et al. [6] where SSI3DVar was adopted
to study the impact of observations. Gelaro et al. [18] using
different data assimilation and forecast systems showed that
only slightly more than half of the observations reduced the
forecast error, while the rest increased it. Kunii et al. [44]
suggested that the presence of observation with arbitrarily
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FIGURE 9: Geographical distribution of 72-hour forecast impact relative to the control forecast on 500 hPa geopotential height in the (a)
GSI3DVar-NoAMSU, (b) GSI3DVar-NoRAOB, (c¢) 3DEnsVar-NoRAOB, and (d) 3DEnsVar-NoAMSU experiments. Color contours shown
here are in percentage (%). Red (blue) color represents positive (negative) impact of the observations on the forecast.

large observation errors can degrade the forecast. Further
studies on identifying the reasons for negative observation
impacts and optimizing the use of the observations are
needed.

4.4. Anomaly Correlation as a Function of Forecast Lead Times.
To identify the impact of observations at different lead times,
the vertically averaged anomaly correlation (AC) of forecasts
up to 5-day forecast lead time was calculated for geopotential
height. The impact of data can be found from the difference of
the AC between the control and data denial experiments. It is
to be noted that the AC having value of 0.6 or higher produces
skillful forecasts [45].

Figure 10 indicates that the impact of observations
increases with increasing forecast lead times in both
GSI3DVar and 3DEnsVar. Moreover, all the experiments
produce skillful forecast as the AC is well above 0.6 for all
the forecast lead times considered. In GSI3DVar, Radiosonde
shows positive impact in NH throughout the forecast lead
times. In comparison, AMSU shows slightly positive or
neutral impact (Figure 10(a)). This result is consistent with
Figure 5 where in GSI3DVar AMSU has shown a mixture of
positive and negative impacts over NH. In SH, Radiosonde

and AMSU show similar impact at early lead times with the
Radiosonde showing slightly more positive impact at later
lead times (Figure 10(b)). This is also consistent with the
results obtained in the previous sections and the underlying
reason for this unexpected result is explained in Section 2.
In tropics, the impact of Radiosonde is slightly larger than
AMSU for day 1 of the forecast and the impact of AMSU was
larger than that of the Radiosonde thereafter (Figure 10(c)).

In 3DEnsVar, different from GSI3DVar, AMSU shows
larger impact than Radiosonde for mostly all the forecast
lead times in SH and tropics (Figures 10(e) and 10(f)). In
NH, the AMSU shows more positive impact from day 3 to
day 5 of forecast in the 3DEnsVar than in the GSI3DVar
for NH (Figures 10(a) and 10(d)). Generally consistent with
Figure 9, the impact of AMSU and Radiosonde was smaller in
3DEnsVar than in GSI3DVar in both SH and tropics (Figures
10(b), 10(c), 10(e), and 10(f)).

4.5. Comparison of GSI3DVar and 3DEnsVar on Satellite
Radiance Bias Correction during the Assimilation. Most of
the satellite radiance data require substantial adjustments
for bias before they can be usefully assimilated. Therefore
impact of the satellite radiance data can be dependent on
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FIGURE 10: Anomaly correlation for geopotential height averaged vertically for the GSI3DVar (top panel) and the 3DEnsVar (bottom panel)
as a function of forecast days for Northern Hemisphere (a, d), Southern Hemisphere (b, e), and tropics (c, f). Black, blue, and red colors are

for control, NoAMSU, and NoRAOB experiments in the GSI3DVar and the 3DEnsVar.

how the bias was corrected. Satellite radiance bias correction
in GSI has two parts: the slowly evolving scan angle bias
correction and state-dependent air mass bias correction.
The former is updated as the weighted average of the
previous angle-dependent bias and the departure between
the new radiance measurements and the model-simulated
radiances. This part of bias is allowed to evolve very slowly
by assigning a small weight on the departure (Haixia Liu,
personal communication). For the air mass bias correction,
the variational bias correction embedded inside the GSI
variational minimization was adopted (e.g., [46, 47]).

To account for the state-dependent bias, predictors which
carry the representative property of each air mass are defined.
The optimal values for the bias correction coefficient are
determined by minimizing the cost function associated
with the variational data assimilation. The variational bias
correction method relies on a linear predictor model for the
bias in each satellite radiance channel. The linear predictor
model consists of a set of bias predictors and unknown bias
parameters associated with each channel. These predictors
are derived from the model background. More details of the

variational bias correction method can be found in Dee and
Uppala [46].

To further explore if the satellite bias correction in
GSI3DVar and 3DEnsVar could affect the impact of the
radiances assimilated by both methods, the biases estimated
by the GSI3DVar and the 3DEnsVar averaged over the
experiment period for the major AMSU satellite radiance
data assimilated are shown in Figure 11. Generally the bias
estimated by GSI3DVar and 3DEnsVar is similar especially for
channels 2-12. This result suggests that most of the difference
in data impact between GSI3DVar and 3DEnsVar explored in
this study is a result of the differences of their background
error covariances.

5. Conclusion and Discussion

The impact of observations can depend on many factors in
a DA system including data quality control, preprocessing,
skill of the model, and the DA algorithm. A GSI 3DVar
based ensemble-variational hybrid DA system (3DEnsVar)
was recently developed and implemented operationally for
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the NCEP GFS, replacing the pure 3DVar based DA system
(GSI3DVar). The impacts of observations assimilated by
GSI3DVar and 3DEnsVar were compared in this study. The
experiments were conducted over a winter month period at
a reduced resolution with a triangular truncation of total
wave numbers 190 and 64 sigma levels. The control runs
assimilated all NCEP operational conventional and satellite
observations. The impacts of AMSU and Radiosonde obser-
vations were studied through data denial experiments. These
platforms were selected based on the significance shown by
these two data sets in the previous studies.

Verifications against the ECMWF analysis show that the
forecasts produced by 3DEnsVar are more accurate than
GSI3DVar experiments for both control and data denial
experiments. The Radiosonde and AMSU show positive
impact in GSI3DVar and 3DEnsVar DA systems in general.
In GSI3DVar, the wind and temperature forecast errors
were increased more by denying Radiosonde than AMSU
observations, suggesting that the impact of Radiosonde is
higher than the AMSU for both wind and temperature
forecasts. In 3DEnsVar, Radiosonde and AMSU show similar
impact for wind forecast while for temperature the impact of
Radiosonde is higher than AMSU in the lower troposphere.
For the specific humidity, AMSU shows larger impact than
Radiosonde for the GSI3DVar and 3DEnsVar DA systems.
The impacts of Radiosonde and AMSU on humidity forecasts
were larger in GSI3DVar than in 3DEnsVar. The zonally
averaged RMSE difference between the control and data
denial experiments shows largest forecast improvements in
the wind near upper levels of the troposphere. For the

GSI3DVar, the Radiosonde and AMSU observations show
similar impact in both magnitude and spatial distribution
in the SH for wind and temperature forecast. For the NH,
Radiosonde shows larger and more extensive impact than
AMSU. The largest difference of the impact of observations
between 3DEnsVar and GSI3DVar is seen in the SH when
Radiosonde was denied. The forecast was degraded much
less in the 3DEnsVar than in the GSI3DVar. The impact
of AMSU observations is mostly similar in 3DEnsVar and
GSI3DVar DA systems for wind and temperature forecast.
For the specific humidity forecast, in both GSI3DVar and
3DEnsVar, AMSU data has largest impact over the tropics
and the impact of Radiosonde dominates in extratropics.
Geographical distribution of the relative forecast degradation
from AMSU and Radiosonde differs substantially in both
GSI3DVar and 3DEnsVar. The magnitude of the relative
degradation of the forecast after denying the observations
is less in 3DEnsVar than in GSI3DVar in general. Anomaly
correlation of forecasts calculated up to 5-day forecast period
indicated that the impact of observations increased with
forecast lead time in both DA systems. Comparison of
the satellite radiance bias correction from GSI3DVar and
3DEnsVar shows that most of the difference in data impact
between the DA systems explored in this study is a result of
the differences of their background error covariances.

In the present study, the forecasts initialized by the
3DEnsVar are more accurate than those initialized by the
GSI3DVar in both control and data denial experiments.
However, the denial of observations has more impact on
the forecast produced by the GSI3DVar than the 3DEnsVar
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in most of the metrics used. Similar results were found
in Kelly et al. [36] where the impact of observations was
investigated in the 3DVar and the 4DVar DA system in
ECMWF operational system. They found that denying the
observations in 3DVar has larger impact than in 4DVar
DA system. Interpreting the results using an idealized rep-
resentation, they observed that in a system overwhelmed
by observations although the 4DVar performs better than
the 3DVar, the incremental gain (loss) achieved by adding
(denying) a particular set of observation will be higher for
the 3DVAR than in the 4DVar.

In the present study, as discussed in Introduction and
Section 4, 3DEnsVar better estimates the background error
covariance including cross variable covariance according
to the background flow and observation network than
GSI3DVar and therefore the observations were better and
were more effectively exploited to increment the background
forecast. For GSI3DVar, where the observation will be mak-
ing mostly local, isotropic increments without proper flow
dependent extrapolation, cross variable covariance is subject
to assumption and the background error covariance does
not adjust to observation networks automatically; its perfor-
mance will therefore be more sensitive to the number and
types of observations assimilated. On the other hand, the flow
dependent estimates of background error provided by the
advanced data assimilation methods such as the 3DEnsVar
play a crucial role in producing optimal analysis, especially
when observations are not dense and when observations do
not directly observe the model variables. It is therefore noted
that for more advanced data assimilation algorithms like the
4DVAR and 3DEnsVar the removal of a set of observations
is not going to affect the forecast quality as much as less
advanced DA method like GSI3DVar.

One of the major shortcomings while using GSI3DVar
is identified in this study. If there is a significant change in
the observing system such as a large reduction in number of
observations or a significant change of the models such as
a resolution change, the static background error covariance
requires being tuned. In contrast, advanced data assimilation
algorithm like the 3DEnsVar DA systems with flow depen-
dent background error covariance may respond adaptively to
the change in the observing system and the models.

The experiments were conducted at a reduced resolution
due to limited computational resources. The impact of AMSU
and Radiosonde observations may vary significantly, if we
conduct the experiment at the full operational resolution.
The present study investigated the impact of two major
observing systems in the current NCEP operational system.
It is expected that the future studies will account for the
impact of other major observing systems such as Atmo-
spheric Infrared Sounder (AIRS) and Infrared Atmospheric
Sounding Interferometer (IASI) in the NCEP GSI hybrid DA
system.
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